Tianlong Chen 1Yi Shen 1,*Li Lin 1Huiyun Lin 1[ ... ]Buhong Li 1,4,**
Author Affiliations
Abstract
1 MOE Key Laboratory of OptoElectronic Science and Technology for Medicine, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou 350117, P. R. China
2 Key Laboratory of Flexible Electronics and Institute of Advanced Materials, Nanjing Technology University, Nanjing 211800, P. R. China
3 School of Medical Technology, Beijing Institute of Technology, Beijing 100081, P. R. China
4 School of Physics and OptoElectronic Engineering, Hainan University, Haikou 570228, P. R. China
Photodynamic therapy (PDT) has been increasingly used in the clinical treatment of neoplastic, inflammatory and infectious skin diseases. However, the generation of reactive oxygen species (ROS) may induce undesired side effects in normal tissue surrounding the treatment lesion, which is a big challenge for the clinical application of PDT. To date, (–)-Epigallocatechin gallate (EGCG) has been widely proposed as an antiangiogenic and antitumor agent for the protection of normal tissue from ROS-mediated oxidative damage. This study evaluates the regulation ability of EGCG for photodynamic damage of blood vessels during hematoporphyrin monomethyl ether (Hemoporfin)-mediated PDT. The quenching rate constants of EGCG for the triplet-state Hemoporfin and photosensitized 1O2 generation are determined to be 6.8×108 M?1S?1 and 1.5×108 M?1S?1, respectively. The vasoconstriction of blood vessels in the protected region treated with EGCG hydrogel after PDT is lower than that of the control region treated with pure hydrogel, suggesting an efficiently reduced photodamage of Hemoporfin for blood vessels treated with EGCG. This study indicates that EGCG is an efficient quencher for triplet-state Hemoporfin and 1O2, and EGCG could be potentially used to reduce the undesired photodamage of normal tissue in clinical PDT.
(–)-Epigallocatechin gallate (EGCG) photodynamic therapy hemoporfin singlet oxygen blood vessel vasoconstriction 
Journal of Innovative Optical Health Sciences
2024, 17(3): 2450002
Author Affiliations
Abstract
1 School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, P. R. China
2 School of Medical Technology, Beijing Institute of Technology, Beijing 100081, P. R. China
3 Department of Laser Medicine, First Medical Center of PLA General Hospital, Beijing 100853, P. R. China
4 Britton Chance Center for Biomedical Photonics – MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
5 Precision Laser Medical Diagnosis and Treatment Innovation Unit, Chinese Academy of Medical Sciences, Beijing 100000, P. R. China
Vascular-targeted photodynamic therapy (V-PDT) is an effective treatment for port wine stains (PWS). However, repeated treatment is usually needed to achieve optimal treatment outcomes, possibly due to the limited treatment light penetration depth in the PWS lesion. The optical clearing technique can increase light penetration in depth by reducing light scattering. This study aimed to investigate the V-PDT in combination with an optical clearing agent (OCA) for the therapeutic enhancement of V-PDT in the rodent skinfold window chamber model. Vascular responses were closely monitored with laser speckle contrast imaging (LSCI), optical coherence tomography angiography, and stereo microscope before, during, and after the treatment. We further quantitatively demonstrated the effects of V-PDT in combination with OCA on the blood flow and blood vessel size of skin microvasculature. The combination of OCA and V-PDT resulted in significant vascular damage, including vasoconstriction and the reduction of blood flow. Our results indicate the promising potential of OCA for enhancing V-PDT for treating vascular-related diseases, including PWS.
Vascular-targeted photodynamic therapy (V-PDT) optical clearing agent (OCA) treatment efficacy enhancement skin-fold window chamber port wine stains 
Journal of Innovative Optical Health Sciences
2024, 17(2): 2350023
Shan Long 1,2Yibing Zhao 3Yuanyuan Xu 2Bo Wang 4[ ... ]Ying Gu 1,2,**
Author Affiliations
Abstract
1 School of Medicine, Nankai University, Tianjin, 300072, P. R. China
2 Department of Laser Medicine. The First Medical Center of Chinese PLA General Hospital, Beijing 100853, P. R. China
3 Department of Oncology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing 100039, P. R. China
4 School of Basic Medicine, Guizhou Medical University, Guiyang 550025, Guizhou, P. R. China
5 College of Medical Technology, Beijing Institute of Technology, Beijing 100081, P. R. China
6 Medical School of Chinese PLA, Beijing 100853, P. R. China
Photodynamic therapy (PDT) has limited effects in treating metastatic breast cancer. Immune checkpoints can deplete the function of immune cells; however, the expression of immune checkpoints after PDT is unclear. This study investigates whether the limited efficacy of PDT is due to upregulated immune checkpoints and tries to combine the PDT and immune checkpoint inhibitor to observe the efficacy. A metastatic breast cancer model was treated by PDT mediated by hematoporphyrin derivatives (HpD-PDT). The anti-tumor effect of HpD-PDT was observed, as well as CD4+T, CD8+T and calreticulin (CRT) by immunohistochemistry and immunofluorescence. Immune checkpoints on T cells were analyzed by flow cytometry after HpD-PDT. When combining PDT with immune checkpoint inhibitors, the antitumor effect and immune effect were assessed. For HpD-PDT at 100mW/cm2 and 40, 60 and 80J/cm2, primary tumors were suppressed and CD4+T, CD8+T and CRT were elevated; however, distant tumors couldn’t be inhibited and survival could not be prolonged. Immune checkpoints on T cells, especially PD1 and LAG-3 after HpD-PDT, were upregulated, which may explain the reason for the limited HpD-PDT effect. After PDT combined with anti-PD1 antibody, but not with anti-LAG-3 antibody, both the primary and distant tumors were significantly inhibited and the survival time was prolonged, additionally, CD4+T, CD8+T, IFN-γ+CD4+T and TNF-α+CD4+T cells were significantly increased compared with HpD-PDT. HpD-PDT could not combat metastatic breast cancer. PD1 and LAG-3 were upregulated after HpD-PDT. Anti-PD1 antibody, but not anti-LAG-3 antibody, could augment the antitumor effect of HpD-PDT for treating metastatic breast cancer.
Photodynamic therapy anti-PD1 antibody anti-LAG-3 antibody anti-tumor immune effects metastatic breast cancer 
Journal of Innovative Optical Health Sciences
2024, 17(1): 2350020
作者单位
摘要
1 北京理工大学医学技术学院,北京 100081
2 解放军总医院第一医学中心激光医学科,北京 100853
光动力疗法(PDT)是一种通过光动力反应选择性地治疗恶性肿瘤及癌前病变等疾病的新型疗法,具有广阔的临床应用前景。光敏剂作为PDT的关键要素之一,其在体浓度分布直接影响PDT疗效,实现光敏剂剂量在体定量检测是开展个性化PDT精准治疗的前提。介绍了光敏剂浓度在体定量检测的影响因素;总结了目前常用的光敏剂荧光光谱定量校准方法及荧光定量检测技术;最后讨论了光敏剂定量检测技术在PDT临床转化应用中所面临的挑战和发展方向。
医用光学 光敏剂 光动力疗法 剂量 定量检测 荧光 临床应用 
中国激光
2023, 50(3): 0307201
Author Affiliations
Abstract
1 School of Medicine, Nankai University, Tianjin 300072, P. R. China
2 Department of Laser Medicine, The First Medical Center of Chinese PLA, General Hospital Beijing 100853, P. R. China
3 College of Medical Technology, Beijing Institute of Technology, Beijing 100081, P. R. China
4 Department of Oncology, The Seventh Medical Center of Chinese PLA, General Hospital Beijing 100039, P. R. China
Photodynamic therapy (PDT) not only destroys tumor cells directly but also induced anti-tumor immune response through damage-associated molecular patterns (DAMPs). It is reported that anti-tumor response was associated with light dose and photosensitizer used in PDT. In this study, 4T1 tumor cells were implanted on both the right and left flanks of mice. Only the right tumor was treated by HpD-PDT, while the left tumor was not irradiated. The anti-tumor immune response induced by HpD-PDT was investigated. The expression of DAMPs and costimulatory molecules induced by HpD-PDT were tested by immunofluorescence and flow cytometry in vivo. Different light doses of PDT were designed to treat 4T1 cells. The killing effect was assessed by CCK-8 kit and apoptosis kit. The expression of DAMPs on 4T1 cells after HpDPDT were evaluated by flow cytometry, western blot and ATP kit. This study showed that CD4tT, CD8tT and the production of IFN-γ were increased significantly on day 10 in righttumor after PDT treatment compared with control group. HpD-PDT enhanced the expression of calreticulin (CRT) on tumor tissue. Importantly, co-stimulatory molecular OX-40 and 4-1BB were elevated on CD8tT cells. In vitro, immunogenic death of 4T1 cells was induced after PDT. Besides, the expression of DAMPs increased with the increasing of energy density. This study indicates that anti-tumor immune effect was induced by HpD-PDT. The knowledge of the involvement of CRT, ATP and co-stimulatory molecules uncovers important mechanistic insight into the anti-tumor immunogenicity. It was the first time that co-stimulatory molecules were investigated and found to elevate after PDT.
Photodynamic therapy hematoporphyrin derivatives anti-tumor immune effect immunogenic cell death costimulatory molecule 
Journal of Innovative Optical Health Sciences
2022, 15(4): 2240002
刘一荻 1,2陈德福 3曾晶 2邱海霞 2,**顾瑛 2,3,4,*
作者单位
摘要
1 解放军医学院,北京 100853
2 解放军总医院第一医学中心激光医学科,北京 100853
3 北京理工大学医学技术学院,北京 100081
4 中国医学科学院精准激光诊疗创新单元,北京 100730
鲜红斑痣(port wine stains, PWS)是最常见的先天性皮肤微血管病变之一,PWS的病因是皮肤真皮层由浅至深的毛细血管畸形扩张。通常表现为面颈部粉色、红色和紫色斑片,随着年龄的增加,其逐渐加深和增厚,严重影响患者的生活质量。血管靶向光动力疗法 (vascular targeted photodynamic therapy, V-PDT) 可以选择性破坏病变血管,是目前国内治疗PWS的首选方法。V-PDT疗效与PWS病灶结构密切相关。PWS的病灶结构可通过活检或者无创光学诊断设备获取,主要包括表皮层黑色素含量、皮肤厚度及血管管径、深度和形态等。总结了目前常用的无创在体光学成像技术在PWS诊疗中的应用现状及PWS病灶结构特点对V-PDT疗效的影响,旨在为V-PDT精准及个性化治疗PWS提供参考。
医用光学 鲜红斑痣 血管靶向光动力疗法 病灶结构 疗效 
中国激光
2022, 49(15): 1507102
Author Affiliations
Abstract
1 Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, P. R. China
2 Department of Laser Medicine, The First Medical Centre, Chinese PLA General Hospital, Beijing 100853, P. R. China
3 Medical School of Chinese PLA, Beijing 100853, P. R. China
4 Precision Laser Medical Diagnosis and Treatment Innovation Unit, Chinese Academy of Medical Sciences, Beijing 100000, P. R. China
Photobiomodulation (PBM) promoting wound healing has been demonstrated by many studies. Currently, 630 nm and 810 nm light-emitting diodes (LEDs), as light sources, are frequently used in the treatment of diabetic foot ulcers (DFUs) in clinics. However, the dose–effect relationship of LED-mediated PBM is not fully understood. Furthermore, among the 630 nm and 810 nm LEDs, which one gets a better effect on accelerating the wound healing of diabetic ulcers is not clear. The aim of this study is to evaluate and compare the effects of 630 nm and 810 nm LED-mediated PBM in wound healing both in vitro and in vivo. Our results showed that both 630 nm and 810 nm LED irradiation significantly promoted the proliferation of mouse fibroblast cells (L929) at different light irradiances (1, 5, and 10mW/cm2. The cell proliferation rate increased with the extension of irradiation time (100, 200, and 500 s), but it decreased when the irradiation time was over 500 s. Both 630 nm and 810 nm LED irradiation (5mW/cm2 significantly improved the migration capability of L929 cells. No difference between 630 nm and 810 nm LED-mediated PBM in promoting cell proliferation and migration was detected. In vivo results presented that both 630 nm and 810 nm LED irradiation promoted the wound healing and the expression of the vascular endothelial growth factor (VEGF) and transforming growth factor (TGF) in the wounded skin of type 2 diabetic mice. Overall, these results suggested that LED-mediated PBM promotes wound healing of diabetic mice through promoting fibroblast cell proliferation, migration, and the expression of growth factors in the wounded skin. LEDs (630 nm and 810 nm) have a similar outcome in promoting wound healing of type 2 diabetic mice.
Photobiomodulation (PBM) light-emitting diode (LED) wound healing diabetic ulcers. 
Journal of Innovative Optical Health Sciences
2022, 15(2): 2250010
Author Affiliations
Abstract
1 School of Information and Electronics Beijing Institute of Technology, Beijing 100081, P. R. China
2 Department of Laser Medicine Chinese People's Liberation Army General Hospital Beijing 100853, P. R. China
3 Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education Fujian Normal University, Fujian 350007, P. R. China
4 Fujian Provincial Key Laboratory for Photonics Technology Fujian Normal University, Fujian 350007, P. R. China
5 Laboratory of All-Solid-State Light Sources Institute of Semiconductors Chinese Academy of Sciences, Beijing 100083, P. R. China
Pulsed and continuous-wave (CW) lasers have been widely used as the light sources for photodynamic therapy (PDT) treatment. Singlet oxygen (1O2) is known to be a major cytotoxic agent in type-II PDT and can be directly detected by its near-infrared luminescence at 1270 nm. As compared to CW laser excitation, the effects of pulse width and repetition rate of pulsed laser on the kinetics and production of 1O2 luminescence were quantitatively studied during photosensitization of Rose Bengal. Significant difference in kinetics of 1O2 luminescence was found under the excitation with various pulse widths of nanosecond, microsecond and CW irradiation with power of 20mW. The peak intensity and duration of 1O2 production varied with the pulse widths for pulsed laser excitation, while the 1O2 was generated continuously and its production reached a steady state with CW excitation. However, no significant difference (P > 0:05) in integral 1O2 production was observed. The results suggest that the PDT efficacy using pulsed laser may be identical to the CW laser with the same wavelength and the same average fluence rate below a threshold in solution.
Photodynamic therapy pulsed laser continuous-wave laser singlet oxygen luminescence 
Journal of Innovative Optical Health Sciences
2016, 9(6): 1650019
作者单位
摘要
1 福建师范大学医学光电科学与技术教育部重点实验室, 福建省光子技术重点实验室, 福建 福州 350007
2 中国人民解放军总医院激光医学科, 北京 100853
血管靶向光动力疗法(Vascular targeted photodynamic therapy, V-PDT)已成为临床治疗鲜红斑痣和老年黄斑变性等血管性疾病的重要方法。V-PDT通过主动或被动血管靶向的作用机制诱发系列生物响应以封闭病变血管。本文评述了V-PDT的作用机制和血管生物学响应, 重点讨论了用于评估V-PDT中血管损伤的光谱与成像技术, 并分析了这些技术的优点和局限性。最后展望了用于评估V-PDT血管损伤的光学技术发展及其应用前景。
光动力学疗法 生物响应 血管损伤 无损 光学监测技术 photodynamic therapy biological response vascular damage non-invasive optical monitoring technique 
激光生物学报
2016, 25(2): 97
作者单位
摘要
1 医学光电信息科学与技术教育部重点实验室, 福建省光子技术重点实验室, 福建 福州 350007
2 中国人民解放军总医院激光医学科, 北京 100853
血管中的血氧饱和度(Oxygen saturation,StO2)作为影响血管靶向光动力疗法(Vascular targeted photodynamic therapy,V-PDT)疗效的关键要素之一,实验测量了活体裸鼠背皮窗模型中血管的漫反射光谱(450-800 nm),并通过拟合漫反射光谱数据定量获得了血管中的StO2。同时,研究了高氧、低氧和常氧等三种不同氧条件下V-PDT中血管的StO2和血管管径的变化情况。结果表明,高氧和常氧条件下的平均StO2和血管收缩较为显著,但低氧组的平均StO2和血管收缩不明显。在相同氧条件和不同光照功率密度条件下,V-PDT前后靶向血管的平均StO2与血管管径的变化之间没有显著相关性,但V-PDT前后平均StO2的变化量与光照功率密度之间呈正相关。
血管靶向光动力疗法 皮窗模型 漫反射光谱 血氧饱和度 血管收缩率 vascular targeted photodynamic therapy dorsal window chamber diffuse reflection spectroscopy blood oxygenation saturation vasoconstriction 
激光生物学报
2015, 24(4): 320

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!